Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Microscopy image showing calcium imaging in heart muscle

In a paper published in the journal Circulation Research, Dr Christopher Toepfer and his team use a new technique to understand how genetic errors that contribute to a heart condition change the cells of the heart.

Charged particles of calcium control how hard the heart pumps throughout the millions of heartbeats in a person’s life, with more calcium inside a heart muscle cell causing it to contract harder.  Calcium signals may be important in understanding cardiomyopathies, a group of heart muscle disease where the heart contracts too often and too hard, and which often run in families.

But so far, scientists have not had a good way to rapidly track this calcium flow through the heart’s cells.

So Chris Toepfer, Yiangos Psaras and Francesca Margara developed a new technique to rapidly and automatically track calcium flow in artificially generated human heart cells. The cells they worked on  contained genetic errors altering calcium flow, and the team generated these human heart cells using a genetic engineering technology called CRISPR/Cas-9. This allowed them to introduce the exact mutation that is present in patients into their ‘model’ system.

The team found that a subset of genetic variants increased how quickly and how hard heart cells beat, a sign of inherited disease. These genetic variants all control how cardiac cells respond to calcium. This is a different mechanisms from previously studied cardiomyopathies.

Testing new drugs 

The team tested the effects of Mavacamten, a  new drug currently in clinical trials for treating cardiomyopathies where their functional analysis indicated an effect on calcium. They found that  while the drug does provide some benefit to the altered human heart cells in a petri dish, it could not fully correct the abnormal patterns of calcium flow in the cells.

 

This finding is important as it identifies that Mavacamten may be useful in treating this disease, but that new drugs that directly target calcium will further help cardiomyopathy patients.
- Dr Christopher Toepfer

 

 

The team now plan to use this tool to study many more genetic changes that lead to cardiomyopathies, including screening new drugs to define new treatments for patients.

Importantly,  the research team have made their technique available for free to other scientists. Their collaborators, Professors Blanca Rodriguez and Alfonso Bueno-Orovio at the Department of Computer Science at Oxford University  are now planning to use the data generated by this tool to test new compounds ‘in silico’, using computer modeling.

 

Funding: Funded by Wellcome and the BHF.

Read the full paper

We want to hear about your news!

Publishing a paper? Just won an award? Get in touch with communications@rdm.ox.ac.uk

 

Similar stories

Anjali Kusumbe receives the RMS Life Sciences Medal

The Royal Microscopical Society awards celebrate the best in microscopy, recognising those making a special contribution to microscopy, cytometry and imaging.

Enterprise Associate Interview with Dr Shilpa Nagarajan

Dr Shilpa Nagarajan is one of the MPLS Enterprise and Innovation Fellows for 2022-23.

The Gene Therapists Headline at Glastonbury 2022

Rosie Munday writes about her experience taking science to the masses at the Glastonbury Festival.

Intensive blood glucose control for people with type 2 diabetes when they are first diagnosed reduces diabetic complications and prolongs life

The study, which tracked volunteers for up to 44 years, showed that the benefits of early intensive blood glucose control can persist for decades.

Wellcome Trust funding success for Jim Hughes and James Davies

£3.6 million in funding awarded by the Wellcome Trust to combine cutting-edge 3D genome technologies with machine learning approaches to decipher the role of the non-coding genome in disease.