Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Hepatic iron content (HIC) quantification via transverse relaxation rate (R2*)-MRI using multi-gradient echo (mGRE) imaging is compromised toward high HIC or at higher fields due to the rapid signal decay. Our study aims at presenting an optimized 2D ultrashort echo time (UTE) sequence for R2* quantification to overcome these limitations. METHODS: Two-dimensional UTE imaging was realized via half-pulse excitation and radial center-out sampling. The sequence includes chemically selective saturation pulses to reduce streaking artifacts from subcutaneous fat, and spatial saturation (sSAT) bands to suppress out-of-slice signals. The sequence employs interleaved multi-echo readout trains to achieve dense temporal sampling of rapid signal decays. Evaluation was done at 1.5 Tesla (T) and 3T in phantoms, and clinical applicability was demonstrated in five patients with biopsy-confirmed massively high HIC levels (>25 mg Fe/g dry weight liver tissue). RESULTS: In phantoms, the sSAT pulses were found to remove out-of-slice contamination, and R2* results were in excellent agreement to reference mGRE R2* results (slope of linear regression: 1.02/1.00 for 1.5/3T). UTE-based R2* quantification in patients with massive iron overload proved successful at both field strengths and was consistent with biopsy HIC values. CONCLUSION: The UTE sequence provides a means to measure R2* in patients with massive iron overload, both at 1.5T and 3T. Magn Reson Med 78:1839-1851, 2017. © 2017 Wiley Periodicals, Inc.

Original publication

DOI

10.1002/mrm.26592

Type

Journal article

Journal

Magn Reson Med

Publication Date

11/2017

Volume

78

Pages

1839 - 1851

Keywords

T2* quantification, UTE, half-pulse excitation, liver MRI, transfusional iron overload, ultrashort echo time imaging