Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Within the human glucocorticoid receptor (GR) steroid binding pocket, tyrosine 735 makes hydrophobic contact with the steroid D ring. Substitution of tyrosine735 selectively impairs glucocorticoid transactivation but not transrepression. We now show, using both mammalian two-hybrid and glutathione-S-transferase pull downs, that such substitutions reduce interaction with steroid receptor coactivator 1, both basally and in response to agonist binding. Using a yeast two-hybrid screen we identified one of the three nuclear receptor interacting domains (NCoR-N1) of nuclear receptor corepressor (NCoR) as interacting with the GR C terminus in an RU486-specific manner. This was confirmed in mammalian two-hybrid experiments, and so we used the NCoR-N1 peptide to probe the GR C-terminal conformation. Substitution of Tyr735phe, Tyr735val, and Tyr735 ser, which impaired steroid receptor coactivator 1 (SRC1) interaction, enhanced NCoR-N1 recruitment, basally and after RU486. RU486 did not direct SRC1 recruitment to any of the GR constructs, and dexamethasone did not allow NCoR-N1 recruitment. Using a glutathione-S-transferase pull-down approach, the NCoR-N1 peptide was found to bind the full-length GR constitutively, and no further induction was seen with RU486, but it was reduced by dexamethasone. As both SRC1 and NCoR are predicted to recognize a common hydrophobic cleft in the GR, it seems that changes favorable to one interaction are detrimental to the other, thus identifying a molecular switch.

Original publication




Journal article


Mol Endocrinol

Publication Date





845 - 859


Amino Acid Sequence, Animals, Binding Sites, COS Cells, Dexamethasone, Glutathione Transferase, Histone Acetyltransferases, Hormone Antagonists, Humans, Ligands, Mifepristone, Molecular Sequence Data, Nuclear Proteins, Nuclear Receptor Co-Repressor 1, Nuclear Receptor Coactivator 1, Point Mutation, Receptors, Glucocorticoid, Receptors, Steroid, Repressor Proteins, Structure-Activity Relationship, Transcription Factors, Two-Hybrid System Techniques, Tyrosine