Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Patients with systemic lupus erythematosus (SLE) have accelerated cardiovascular disease and dysfunctional endothelial repair mechanisms. Myeloid angiogenic cells (MACs), derived from circulating monocytes, augment vascular repair by paracrine secretion of pro-angiogenic factors. We observed that SLE MACs are dysfunctional and secrete pro-inflammatory cytokines. We also found that the vitamin D receptor was transiently expressed during MAC differentiation and that in vitro, calcitriol increased differentiation of monocytes into MACs in both SLE and in a model using the prototypic SLE cytokine, interferon-alpha. The active form of vitamin D (calcitriol) restored the SLE MAC phenotype towards that of healthy subjects with reduced IL-6 secretion, and normalised surface marker expression. Calcitriol also augmented the angiogenic capacity of MACs via the down-regulation of CXCL-10. In SLE patients treated with cholecalciferol for 12 weeks, the improvement in endothelial function correlated with increase in serum 25(OH)D concentrations independently of disease activity. We also show that MACs were able to positively modulate eNOS expression in human endothelial cells in vitro, an effect further enhanced by calcitriol treatment of SLE MACs. The results demonstrate that vitamin D can positively modify endothelial repair mechanisms and thus endothelial function in a population with significant cardiovascular risk.

Original publication




Journal article


Sci Rep

Publication Date





Adult, Calcitriol, Cell Adhesion, Cell Count, Cell Differentiation, Cell Movement, Chemokine CXCL10, Down-Regulation, Endothelium, Vascular, Humans, Interferons, Lupus Erythematosus, Systemic, Middle Aged, Models, Biological, Myeloid Cells, Neovascularization, Physiologic, Nitric Oxide Synthase Type III, Phenotype, Vitamin D