Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The glucocorticoid receptor (GR) is essential for the stress response in mammals. We investigated potential non-transcriptional roles of GR in cellular stress response using fission yeast as a model.We surprisingly discovered marked heat stress resistance in yeast ectopically expressing human GR, which required expression of both the N-terminal transactivation domain, and the C-terminal ligand binding domain, but not the DNA-binding domain of the GR. This effect was not affected by GR ligand exposure, and occurred without significant GR nuclear accumulation. Mechanistically, the GR survival effect required Hsp104, and, indeed, GR expression increased Hsp104 expression. Proteomic analysis revealed GR binding to translasome components, including eIF3, a known partner for Sty1, a pattern of protein interaction which we confirmed using yeast two-hybrid studies.Taken together, we find evidence for a novel pathway conferring stress resistance in yeast that can be activated by the human GR, acting by protein-protein mechanisms in the cytoplasm. This suggests that in organisms where GR is natively expressed, GR likely contributes to stress responses through non-transcriptional mechanisms in addition to its well-established transcriptional responses.

Original publication

DOI

10.1038/s41598-017-09722-z

Type

Journal article

Journal

Sci Rep

Publication Date

21/09/2017

Volume

7