Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Performance of complex motor tasks, such as rapid sequences of finger movements, can be improved in terms of speed and accuracy over several weeks by daily practice sessions. This improvement does not generalize to a matched sequence of identical component movements, nor to the contralateral hand. Here we report a study of the neural changes underlying this learning using functional magnetic resonance imaging (MRI) of local blood oxygenation level-dependent (BOLD) signals evoked in primary motor cortex (M1). Before training, a comparable extent of M1 was activated by both sequences. However, two ordering effects were observed: repeating a sequence within a brief time window initially resulted in a smaller area of activation (habituation), but later in larger area of activation (enhancement), suggesting a switch in M1 processing mode within the first session (fast learning). By week 4 of training, concurrent with asymptotic performance, the extent of cortex activated by the practised sequence enlarged compared with the unpractised sequence, irrespective of order (slow learning). These changes persisted for several months. The results suggest a slowly evolving, long-term, experience-dependent reorganization of the adult M1, which may underlie the acquisition and retention of the motor skill.

Original publication

DOI

10.1038/377155a0

Type

Journal article

Journal

Nature

Publication Date

14/09/1995

Volume

377

Pages

155 - 158

Keywords

Adult, Evoked Potentials, Humans, Learning, Magnetic Resonance Imaging, Male, Motor Cortex, Motor Skills, Neuronal Plasticity, Oxygen