Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The interplay between four surface-expressed virulence factors of Neisseria meningitidis (pili, Opc, capsule and lipopolysaccharide (LPS)) in host cell adhesion and invasion was examined using derivatives of a serogroup B strain, MC58, created by mutation (capsule, Opc) and selection of variants. To examine the role of Opc and of additional expression of pili, bacteria lacking the expression of Opa proteins were used. The effects of different LPS structures were examined in variants expressing either sialylated (L3 immunotype) or truncated non-sialylated (L8 immunotype) LPS. Studies showed that (i) pili were essential for meningococcal interactions with host cells in both capsulate and acapsulate bacteria with the sialylated L3 LPS immunotype, (ii) the Opc-mediated invasion of host cells by piliated and non-piliated bacteria was observed only in acapsulate organisms with L8 LPS immunotype, and (iii) expression of pili in Opc-expressing bacteria resulted in increased invasion. Investigations on the mechanisms of cellular invasion indicated that the Opc-mediated invasion was dependent on the presence of serum in the incubation medium and was mediated by serum proteins with arginine-glycine-aspartic acid (RGD) sequence. Cellular invasion in piliated Opc+ phenotype also required bridging molecules containing the RGD recognition sequence and appeared to involve the integrin alpha v beta 3 as a target receptor on endothelial cells. These studies extend the previous observations on variants of a serogroup A strain (C751) and show that Opc mediates cellular invasion in distinct meningococcal strains and provide confirmation of its mechanism of action. This is the first investigation that evaluates, using derivatives of a single strain, the interplay between four meningococcal surface virulence factors in host cell invasion.


Journal article


Mol Microbiol

Publication Date





741 - 754


Antigens, Bacterial, Bacterial Outer Membrane Proteins, Blood Proteins, Blotting, Western, Cells, Cultured, Cloning, Molecular, Electrophoresis, Polyacrylamide Gel, Endothelium, Fimbriae, Bacterial, Gene Expression Regulation, Bacterial, Genes, Bacterial, Genetic Variation, Humans, Lipopolysaccharides, Meningococcal Infections, Microscopy, Electron, Microscopy, Electron, Scanning, Mutagenesis, Insertional, Neisseria meningitidis, Oligopeptides, Plasmids, Receptors, Vitronectin, Virulence