Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The parenchyma of the normal "resting" human breast was examined by electron microscopy to characterize the cells undergoing mitosis and the mechanism by which the normal tissue architecture is maintained during this process. In this study of 112 mitotic cells, it was found that the mitotic cells were luminally positioned, polarised epithelial cells with no evidence of myoepithelial cell division. Ultrastructurally, the nuclear and cytoplasmic changes were consistent with previous reports of mitosis in other tissues. However, unlike all previous reports, two specific orientations of the nuclear spindle and thus the planes of cytokinesis were observed. In a few cases the spindle formed parallel to the lumen and division resulted in two luminally positioned daughter cells. However, in the majority of mitotic cells the spindle was approximately at right angles to the lumen and this orientation resulted in a luminally and a basally positioned daughter cell. It is proposed that the abnormally positioned basal daughter cell could develop into a myoepithelial cell or undergo deletion (apoptosis). Thus the two orientations of mitosis may explain the mechanism by which the epithelial and myoepithelial cell populations were maintained by a single progenitor cell without disrupting the integrity of the tissue architecture.

Type

Journal article

Journal

Cell Tissue Res

Publication Date

06/1988

Volume

252

Pages

581 - 587

Keywords

Adolescent, Adult, Breast, Centrioles, Female, Humans, Intercellular Junctions, Microscopy, Electron, Mitosis