Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Athletes regularly endure large increases in ventilation and accompanying perceptions of breathlessness. Whilst breathing perceptions often correlate poorly with objective measures of lung function in both healthy and clinical populations, we have previously demonstrated closer matching between subjective breathlessness and changes in ventilation in endurance athletes, suggesting that athletes may be more accurate during respiratory interoception. To better understand the link between exercise and breathlessness, we sought to identify the mechanisms by which the brain processing of respiratory perception might be optimised in athletes. Twenty endurance athletes and twenty sedentary controls underwent 7 T functional magnetic resonance imaging. Inspiratory resistive loading induced conscious breathing perceptions (breathlessness), and a delay-conditioning paradigm was employed to evoke preceding periods of breathlessness-anticipation. Athletes demonstrated anticipatory brain activity that positively correlated with resulting breathing perceptions within key interoceptive areas, such as the thalamus, insula and primary sensorimotor cortices, which was negatively correlated in sedentary controls. Athletes also exhibited altered connectivity between interoceptive attention networks and primary sensorimotor cortex. These functional differences in athletic brains suggest that exercise may alter anticipatory representations of respiratory sensations. Future work may probe whether these brain mechanisms are harnessed when exercise is employed to treat breathlessness within chronic respiratory disease.

Original publication




Journal article



Publication Date





92 - 101


Athletes, Breathlessness, Interoception, Ventilation, fMRI, Adult, Athletes, Brain, Brain Mapping, Dyspnea, Exercise, Female, Humans, Interoception, Magnetic Resonance Imaging, Male, Pulmonary Ventilation, Respiration, Young Adult