Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The sulfonylureas are effective oral glucose-lowering agents with a long history of clinical use. While all have the same general mechanism of action, their pharmacokinetic properties are influenced by factors such as dosage, rate of absorption, duration of action, route of elimination, tissue specificity, and binding affinity for pancreatic β-cell receptor. The result is a class of agents with similar HbA1c-lowering efficacy, but well-documented differences in terms of effects on hypoglycemia, and cardiovascular and renal safety. This review examines the differences between currently available sulfonylureas with a focus on how gliclazide modified release (MR) differs from other members of this class and from newer oral antihyperglycemic agents in the form of dipeptidyl peptidase-4 (DPP4) and sodium- glucose cotransporter 2 (SGLT2) inhibitors. The first part focuses on major outcome trials that have been conducted with the sulfonylureas and new oral agents. Consideration is then given to factors important for day-to-day prescribing including efficacy and durability, weight changes, hypoglycemia, renal effects and cost. Based on current evidence, third-generation sulfonylureas such as gliclazide MR possess many of the properties desired of a type 2 diabetes drug including high glucose-lowering efficacy, once-daily oral administration, few side effects other than mild hypoglycemia, and cardiovascular safety.

Original publication




Journal article


Diabetes Res Clin Pract

Publication Date





1 - 14


DPP4 inhibitors, Glibenclamide/glyburide, Gliclazide, Glimepiride, Glipizide, SGLT2 inhibitors, Sulfonylureas, Type 2 diabetes, Diabetes Mellitus, Type 2, Gliclazide, Humans, Hypoglycemic Agents, Sulfonylurea Compounds