Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

Both CC and CXC-class chemokines drive inflammatory disease. Tick salivary chemokine-binding proteins (CKBPs), or evasins, specifically bind subsets of CC- or CXC-chemokines, and could precisely target disease-relevant chemokines. Here we have used yeast surface display to identify two tick evasins: a CC-CKBP, P1243 from Amblyomma americanum and a CXC-CKBP, P1156 from Ixodes ricinus. P1243 binds 11 CC-chemokines with Kd < 10 nM, and 10 CC-chemokines with Kd between 10 and 100 nM. P1156 binds two ELR + CXC-chemokines with Kd < 10 nM, and four ELR + CXC-chemokines with Kd between 10 and 100 nM. Both CKBPs neutralize chemokine activity with IC50 < 10 nM in cell migration assays. As both CC- and CXC-CKBP activities are desirable in a single agent, we have engineered "two-warhead" CKBPs to create single agents that bind and neutralize subsets of CC and CXC chemokines. These results show that tick evasins can be linked to create non-natural proteins that target subsets of CC and CXC chemokines. We suggest that "two-warhead" evasins, designed by matching the activities of parental evasins to CC and CXC chemokines expressed in disease, would achieve precision targeting of inflammatory disease-relevant chemokines by a single agent.

Original publication

DOI

10.1038/s41598-018-24568-9

Type

Journal article

Journal

Sci Rep

Publication Date

20/04/2018

Volume

8