Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genome-wide association studies (GWAS) of responses to drugs, including clopidogrel, pegylated-interferon and carbamazepine, have led to the identification of specific patient subgroups that benefit from therapy. However, the identification and replication of common sequence variants that are associated with either efficacy or safety for most prescription medications at odds ratios (ORs) >3.0 (equivalent to >300% increased efficacy or safety) has yet to be translated to clinical practice. Although some of the studies have been completed, the results have not been incorporated into therapy, and a large number of commonly used medications have not been subject to proper pharmacogenomic analysis. Adoption of GWAS, exome or whole genome sequencing by drug development and treatment programs is the most striking near-term opportunity for improving the drug candidate pipeline and boosting the efficacy of medications already in use.

Original publication

DOI

10.1038/nbt.2424

Type

Journal article

Journal

Nat Biotechnol

Publication Date

11/2012

Volume

30

Pages

1117 - 1124

Keywords

Animals, Chromosome Mapping, Drug Design, Genetic Predisposition to Disease, Humans, Pharmacogenetics, Sequence Analysis, DNA