Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The transition between latent and active tuberculosis (TB) occurs before symptom onset. Better understanding of the early events in subclinical disease will facilitate the development of diagnostics and interventions that improve TB control. This is particularly relevant in the context of HIV-1 coinfection where progression of TB is more likely. In a recent study using [18F]-fluoro-2-deoxy-d-glucose positron emission/computed tomography (FDG-PET/CT) on 35 asymptomatic, HIV-1-infected adults, we identified 10 participants with radiographic evidence of subclinical disease, significantly more likely to progress than the 25 participants without. To gain insight into the biological events in early disease, we performed blood-based whole genome transcriptomic analysis on these participants and 15 active patients with TB. We found transcripts representing the classical complement pathway and Fcγ receptor 1 overabundant from subclinical stages of disease. Levels of circulating immune (antibody/antigen) complexes also increased in subclinical disease and were highly correlated with C1q transcript abundance. To validate our findings, we analyzed transcriptomic data from a publicly available dataset where samples were available in the 2 y before TB disease presentation. Transcripts representing the classical complement pathway and Fcγ receptor 1 were also differentially expressed in the 12 mo before disease presentation. Our results indicate that levels of antibody/antigen complexes increase early in disease, associated with increased gene expression of C1q and Fcγ receptors that bind them. Understanding the role this plays in disease progression may facilitate development of interventions that prevent this, leading to a more favorable outcome and may also be important to diagnostic development.

Original publication

DOI

10.1073/pnas.1711853115

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

30/01/2018

Volume

115

Pages

E964 - E973

Keywords

HIV, complement, immune complex, incipient disease, tuberculosis, Antibodies, Antigen-Antibody Complex, Cluster Analysis, Coinfection, Comorbidity, Complement System Proteins, Disease Progression, Fluorodeoxyglucose F18, HIV Infections, Humans, Interferons, Oligonucleotide Array Sequence Analysis, Positron Emission Tomography Computed Tomography, Signal Transduction, Transcription, Genetic, Transcriptional Activation, Transcriptome, Tuberculosis