Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abnormally high levels of the 'oncometabolite' 2-hydroxyglutarate (2-HG) occur in many grade II and III gliomas, and correlate with mutations in the genes of isocitrate dehydrogenase (IDH) isoforms. In vivo measurement of 2-HG in patients, using magnetic resonance spectroscopy (MRS), has largely been carried out at 3 T, yet signal overlap continues to pose a challenge for 2-HG detection. To combat this, several groups have proposed MRS methods at ultra-high field (≥7 T) where theoretical increases in signal-to-noise ratio and spectral resolution could improve 2-HG detection. Long echo time (long-TE) semi-localization by adiabatic selective refocusing (semi-LASER) (TE = 110 ms) is a promising method for improved 2-HG detection in vivo at either 3 or 7 T owing to the use of broad-band adiabatic localization. Using previously published semi-LASER methods at 3 and 7 T, this study directly compares the detectability of 2-HG in phantoms and in vivo across nine patients. Cramér-Rao lower bounds (CRLBs) of 2-HG fitting were found to be significantly lower at 7 T (6 ± 2%) relative to 3 T (15 ± 7%) (p = 0.0019), yet were larger at 7 T in an IDH wild-type patient. Although no increase in SNR was detected at 7 T (77 ± 26) relative to 3 T (77 ± 30), the detection of 2-HG was greatly enhanced through an improved spectral profile and increased resolution at 7 T. 7 T had a large effect on pairwise fitting correlations between γ-aminobutyric acid (GABA) and 2-HG (p = 0.004), and resulted in smaller coefficients. The increased sensitivity for 2-HG detection using long-TE acquisition at 7 T may allow for more rapid estimation of 2-HG (within a few spectral averages) together with other associated metabolic markers in glioma.

Original publication




Journal article


NMR Biomed

Publication Date





2-HG, detection, glioma, ultra-high field, Adult, Brain Neoplasms, Choline, Creatine, Female, Glioma, Glutarates, Humans, Isocitrate Dehydrogenase, Magnetic Resonance Spectroscopy, Male, Middle Aged, Young Adult