Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Inflammatory lesions in the brain activate a systemic acute-phase response (APR), which is dependent on the release of extracellular vesicles (EVs) into the circulation. The resulting APR is responsible for regulating leukocyte mobilization and subsequent recruitment to the brain. Factors that either exacerbate or inhibit the APR will also exacerbate or inhibit central nervous system (CNS) inflammation as a consequence and have the potential to influence ongoing secondary damage. Here, we were interested to discover how the circulating EV population changes after traumatic brain injury (TBI) and how manipulation of the circulating EV pool impacts on the outcome of TBI. We found the number of circulating EVs increased rapidly post-TBI, and this was accompanied by an increase in CNS and hepatic leukocyte recruitment. In an adoptive transfer study, we then evaluated the outcomes of TBI after administering EVs derived from either in vitro macrophage or endothelial cell lines stimulated with lipopolysaccharide (LPS), or from murine plasma from an LPS challenge using the air-pouch model. By manipulating the circulating EV population, we were able to demonstrate that each population of transferred EVs increased the APR. However, the characteristics of the response were dependent on the nature of the EVs; specifically, it was significantly increased when animals were challenged with macrophage-derived EVs, suggesting that the cellular origins of EVs may determine their function. Selectively targeting EVs from macrophage/monocyte populations is likely to be of value in reducing the impact of the systemic inflammatory response on the outcome of traumatic CNS injury.

Original publication

DOI

10.1089/neu.2017.5049

Type

Journal article

Journal

J Neurotrauma

Publication Date

15/02/2018

Volume

35

Pages

639 - 651

Keywords

blood–brain barrier, extracellular vesicles, inflammation, microglia, traumatic brain injury