Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIMS/HYPOTHESIS: Fatty acids affect insulin secretion in vivo, but little is known about the effects of specific fatty acids. Our aim was to investigate differential effects of acutely increased plasma monounsaturated, polyunsaturated and saturated fatty acids on glucose-stimulated insulin secretion in healthy humans. METHODS: A new experimental protocol was used to increase plasma monounsaturated (MUFA test), polyunsaturated (PUFA test) or saturated (SFA test) non-esterified fatty acids for 2 h by repeated oral fat feeding and continuous intravenous heparin infusion. This was followed by a hyperglycaemic clamp (10 mmol/l) to test insulin secretion in response to a prior plasma NEFA increase. RESULTS: Total plasma NEFA concentrations were increased during the fat tests compared to the control visit (1.7-fold increase for MUFA and SFA tests and 1.4-fold increase for PUFA test; p<0.001). Exaggerated responses in plasma insulin, C-peptide and proinsulin concentrations were seen during the hyperglycaemic clamp after increasing plasma NEFA concentrations compared with the control (p<0.01). The effects were greatest for the MUFA test followed by the PUFA test and SFA test (p<0.01). Plasma GLP-1 concentrations increased during fat feeding, with a higher response during the MUFA test compared to PUFA and SFA tests (p<0.01). CONCLUSION/INTERPRETATION: Increasing plasma NEFA concentrations by oral fat feeding with heparin infusion augments glucose-stimulated insulin secretion with the greatest effect for monounsaturated fatty acids and the lowest effect for saturated fatty acids. Monounsaturated fatty acids also increase GLP-1 more than saturated fatty acids. Therefore, the exaggerated insulin concentrations could be due to both NEFA and GLP-1.

Original publication

DOI

10.1007/s00125-002-0964-9

Type

Journal article

Journal

Diabetologia

Publication Date

11/2002

Volume

45

Pages

1533 - 1541

Keywords

Adult, Anticoagulants, Dietary Fats, Fatty Acids, Monounsaturated, Fatty Acids, Nonesterified, Fatty Acids, Unsaturated, Female, Glucagon, Glucagon-Like Peptide 1, Heparin, Humans, Infusions, Intravenous, Insulin, Insulin Secretion, Male, Middle Aged, Peptide Fragments, Protein Precursors, Reference Values