Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

N-methyl-D-aspartate (NMDA) receptor subunit expression changes during development and following injury in several brain regions. These changes may be mediated by neurotrophic factors, such as brain derived neurotrophic factor (BDNF). Exposure of cultured cortical neurons to BDNF (100 ng/ml) for 24 h produced a significant decrease in the NMDA-induced whole-cell currents sensitive to the NR2B subunit selective NMDA receptor antagonist, CP-101,606, suggesting a relative decrease in NR2B subunit expression. There was a significant increase in NR2A by Western blot analysis. Consistent with the electrophysiology and Western blot analysis, reverse transcriptase-polymerase chain reaction (RT-PCR) amplification revealed that BDNF caused a significant increase in relative NR2A subunit expression, a significant decrease in relative NR2B subunit expression and no change in relative NR2C subunit expression. These results suggest that BDNF enhances NMDA receptor maturation, warranting further study of the mechanism of BDNF effects on NMDA receptor subunit expression and the role these effects play in development and neuronal injury.

Type

Journal article

Journal

Neurosci Lett

Publication Date

21/08/1998

Volume

252

Pages

211 - 214

Keywords

Animals, Brain-Derived Neurotrophic Factor, Cells, Cultured, Cerebral Cortex, Drug Evaluation, Preclinical, Neurons, Rats, Receptors, N-Methyl-D-Aspartate, Reverse Transcriptase Polymerase Chain Reaction