Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Reperfusion therapy with tissue plasminogen activator (tPA) is a rational therapy for acute ischemic stroke. Properly titrated use of tPA improves clinical outcomes. However, there is also an associated risk of hemorrhagic transformation after tPA therapy. Emerging data now suggest that some of these potentially neurotoxic side effects of tPA may be due to its signaling actions in the neurovascular unit. Besides its intended role in clot lysis, tPA is also an extracellular protease and signaling molecule in brain. tPA mediates matrix remodeling during brain development and plasticity. By interacting with the NMDA-type glutamate receptor, tPA may amplify potentially excitotoxic calcium currents. At selected concentrations, tPA may be vasoactive. Finally, by augmenting matrix metalloproteinase (MMP) dysregulation after stroke, tPA may degrade extracellular matrix integrity and increase risks of neurovascular cell death, blood-brain barrier leakage, edema, and hemorrhage. Understanding these pleiotropic actions of tPA may reveal new therapeutic opportunities for combination stroke therapy.

Original publication

DOI

10.1161/01.STR.0000143219.16695.af

Type

Conference paper

Publication Date

11/2004

Volume

35

Pages

2726 - 2730

Keywords

Animals, Brain, Cerebral Hemorrhage, Extracellular Matrix, Humans, Matrix Metalloproteinase 9, Matrix Metalloproteinases, Plasminogen Activators, Stroke, Thrombolytic Therapy, Tissue Plasminogen Activator, Vasoconstriction