Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Early reperfusion following stroke results in reduced tissue injury. Paradoxically, restoration of blood flow under certain conditions may also cause delayed neuronal damage (reperfusion injury). The interrelationship of changes in T1, T2 and diffusion weighted images of tissue water were studied in mouse models of permanent and transient focal cerebral ischemia. A sham surgery or either permanent or transient (30 min) middle cerebral artery occlusion (MCAO) were induced in 14 mice. Magnetic resonance (MR) images of the brain were acquired including: T2 maps, T1 maps and diffusion weighted spin-echo images to produce apparent diffusion coefficient of water apparent diffusion coefficient (ADC) maps. Images were collected on average 90 min after MCAO in both the transient and permanent ischemia groups. Scans were repeated at 24h post-occlusion in mice with transient ischemia. Permanent MCAO resulted in decreases in ADC and no significant change in T2 acutely following MCAO. There were increases in T1 compared to sham controls within the ischemic region in mice following either transient or permanent MCAO (P<0.001). In contrast to permanent MCAO, there were increases in T2 (P<0.001) in the infarct area present in the reperfusion phase within 90 min of transient MCAO. There was considerable infarct growth at 24h (P<0.001). This study demonstrates that following either type of occlusion there are early increases in T1 suggesting an elevated water content in the stroke lesion, while only following transient MCAO are there early increases in T2, indicative of early vasogenic oedema with breakdown of the blood-brain barrier.

Original publication

DOI

10.1016/j.neulet.2005.06.067

Type

Journal article

Journal

Neurosci Lett

Publication Date

04/11/2005

Volume

388

Pages

54 - 59

Keywords

Animals, Blood-Brain Barrier, Body Water, Brain Edema, Brain Ischemia, Cerebral Infarction, Diffusion, Diffusion Magnetic Resonance Imaging, Disease Models, Animal, Infarction, Middle Cerebral Artery, Male, Mice, Mice, Inbred C57BL, Prosencephalon, Reperfusion Injury, Stroke, Time Factors