Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Inactivating mutations of the calcium-sensing receptor (CaSR), a G-protein-coupled receptor with extracellular (ECD), transmembrane (TMD) and intracellular (ICD) domains, cause familial hypocalciuric hypercalcaemia, neonatal severe primary hyperparathyroidism and occasionally primary hyperparathyroidism in adults. OBJECTIVE: To investigate a patient with typical symptomatic primary hyperparathyroidism for CaSR abnormalities. PATIENT AND DESIGN: A 51-year-old woman with primary hyperparathyroidism was investigated for CaSR abnormalities as her severe hypercalcaemia (3·75 mm) persisted after the removal of two large parathyroid adenomas and she was the daughter of normocalcaemic consanguineous parents. Following informed consent, CASR mutational analysis was undertaken using leucocyte DNA. Wild-type and mutant CaSR constructs were expressed in human embryonic kidney (HEK) 293 cells and assessed by measuring their intracellular calcium responses to changes in extracellular calcium. Clinical data were pooled with previous studies to search for genotype-phenotype correlations. RESULTS: The proband was homozygous for a Pro339Thr CaSR missense mutation, located in the ECD, and her normocalcaemic relatives were heterozygous. The mutant Thr339 CaSR had a rightward shift in its dose-response curve with a significantly higher EC(50) = 3·18 mm ± 0·19 compared to the wild-type EC(50) = 2·16 mm ± 0·1 (P < 0·01), consistent with a loss-of-function mutation. An analysis of CaSR mutations in patients with primary hyperparathyroidism revealed that those of the ECD were associated with a significantly greater hypercalcaemia that was less likely to be corrected after removal of the parathyroid tumours. CONCLUSIONS: A CaSR missense mutation causing a loss-of-receptor-function can cause symptomatic primary hyperparathyroidism in adulthood.

Original publication




Journal article


Clin Endocrinol (Oxf)

Publication Date





715 - 722


Adolescent, Adult, Aged, Child, Female, Humans, Hypercalcemia, Hyperparathyroidism, Primary, Male, Middle Aged, Mutation, Mutation, Missense, Pedigree, Receptors, Calcium-Sensing, Sequence Analysis, DNA, Young Adult