Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Multiple Endocrine Neoplasia type 1 (MEN1) is an autosomal-dominant disorder characterised by the occurrence of tumours of the parathyroids, pancreas and anterior pituitary. The MEN1 gene, consists of 10 exons that encode a 610-amino acid protein referred to as Menin. Menin is predominantly a nuclear protein that has roles in transcriptional regulation, genome stability, cell division and proliferation. Germ-line mutations usually result in MEN1 or occasionally in an allelic variant referred to as Familial Isolated Hyperparathyroidism (FIHP). MEN1 tumours frequently have loss of heterozygosity (LOH) of the MEN1 locus, which is consistent with a tumour suppressor role of MEN1. Furthermore, somatic abnormalities of MEN1 have been reported in MEN1 and non-MEN1 endocrine tumours. To date, over 1300 mutations have been reported, and the majority (>70%) of these are predicted to lead to truncated forms of Menin. The mutations are scattered throughout the >9 kb genomic sequence of the MEN1 gene. Four, which consist of c.249_252delGTCT (deletion at codons 83-84), c.1546_1547insC (insertion at codon 516), c.1378C>T (Arg460Ter) and c.628_631delACAG (deletion at codons 210-211) have been reported to occur frequently in 4.5%, 2.7%, 2.6% and 2.5% of families, respectively. However, a comparison of the clinical features in patients and their families with the same mutations reveals an absence of phenotype-genotype correlations. The majority of MEN1 mutations are likely to disrupt the interactions of Menin with other proteins and thereby alter critical events in cell cycle regulation and proliferation.

Original publication




Journal article


Best Pract Res Clin Endocrinol Metab

Publication Date





355 - 370


Animals, Disease Models, Animal, Germ-Line Mutation, Humans, Mice, Multiple Endocrine Neoplasia Type 1, Neuroendocrine Tumors, Parathyroid Neoplasms, Pituitary Neoplasms, Proto-Oncogene Proteins