Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Almost (all atom molecular simulation toolkit) is an open source computational package for structure determination and analysis of complex molecular systems including proteins, and nucleic acids. Almost has been designed with two primary goals: to provide tools for molecular structure determination using various types of experimental measurements as conformational restraints, and to provide methods for the analysis and assessment of structural and dynamical properties of complex molecular systems. The methods incorporated in Almost include the determination of structural and dynamical features of proteins using distance restraints derived from nuclear Overhauser effect measurements, orientational restraints obtained from residual dipolar couplings and the structural restraints from chemical shifts. Here, we present the first public release of Almost, highlight the key aspects of its computational design and discuss the main features currently implemented. Almost is available for the most common Unix-based operating systems, including Linux and Mac OS X. Almost is distributed free of charge under the GNU Public License, and is available both as a source code and as a binary executable from the project web site at Interested users can follow and contribute to the further development of Almost on

Original publication




Journal article


J Comput Chem

Publication Date





1101 - 1105


CHESHIRE, Molecular simulations, NMR spectroscopy, chemical shifts, molecular dynamics, residual dipolar couplings, Molecular Dynamics Simulation, Nuclear Magnetic Resonance, Biomolecular, Protein Conformation, Proteins, Software