Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Glycolipid ligands for invariant natural killer T cells (iNKT cells) are loaded onto CD1d molecules in the late endosome/lysosome. Accumulation of glycosphingolipids (GSLs) in lysosomal storage diseases could potentially influence endogenous and exogenous lipid loading and/or presentation and, thus, affect iNKT cell selection or function. The percentages and frequency of iNKT cells were reduced in multiple mouse models of lysosomal GSL storage disease, irrespective of the specific genetic defect or lipid species stored. Reduced numbers of iNKT cells resulted in the absence of cytokine production in response to alpha-galactosylceramide (alpha-GalCer) and reduced iNKT cell-mediated lysis of wild-type targets loaded with alpha-GalCer. The reduction in iNKT cells did not result from defective expression of CD1d or a lack of antigen-presenting cells. Although H-2 restricted CD4(+) T cell responses were generally unaffected, processing of a lysosome-dependent analogue of alpha-GalCer was impaired in all the strains of mice tested. These data suggest that GSL storage may result in alterations in thymic selection of iNKT cells caused by impaired presentation of selecting ligands.

Original publication




Journal article


J Exp Med

Publication Date





2293 - 2303


Animals, Antigens, CD1, Antigens, CD1d, Cell Differentiation, Flow Cytometry, Galactosylceramides, Glycosphingolipids, Killer Cells, Natural, Ligands, Lysosomal Storage Diseases, Mice, Mice, Mutant Strains, T-Lymphocyte Subsets