Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Although thiazolidinediones were designed as specific peroxisome proliferator-activated receptor (PPAR)-gamma-ligands, there is evidence for some off-target effects mediated by a non-PPARgamma mechanism. Previously we have shown that rosiglitazone has antiinflammatory actions not explicable by activation of PPARgamma,but possibly by the glucocorticoid receptor (GR). Rosiglitazone induces nuclear translocation both of GR-green fluorescent protein, and endogenous GR in HeLa and U20S cells but with slower kinetics than dexamethasone. Rosiglitazone also induces GR phosphorylation (Ser211), a GR ligand-binding-specific effect. Rosiglitazone drives luciferase expression from a simple glucocorticoid-response element containing reporter gene in a GR-dependent manner (EC50 4 microm), with a similar amplitude response to the partial GR agonist RU486. Rosiglitazone also inhibits dexamethasone-driven reporter gene activity (IC50 2.9 microm) in a similar fashion to RU486, suggesting partial agonist activity. Importantly we demonstrate a similar effect in PPARgamma-null cells, suggesting both GR dependence and PPARgamma independence. Rosiglitazone also activates a GAL4-GR chimera, driving a upstream activating sequence promoter, demonstrating DNA template sequence independence and furthermore enhanced steroid receptor coactivator-1-GR interaction, measured by a mammalian two-hybrid assay. Both ciglitazone and pioglitazone, structurally related to rosiglitazone, show similar effects on the GR. The antiproliferative effect of rosiglitazone is increased in U20S cells that overexpress GR, suggesting a biologically important GR-dependent component of rosiglitazone action. Rosiglitazone is a partial GR agonist, affecting GR activation and trafficking to influence engagement of target genes and affect cell function. This novel mode of action may explain some off-target effects observed in vivo. Additionally, antagonism of glucocorticoid action may contribute to the antidiabetic actions of rosiglitazone.

Original publication

DOI

10.1210/en.2008-0196

Type

Journal article

Journal

Endocrinology

Publication Date

01/2009

Volume

150

Pages

75 - 86

Keywords

Cell Division, Cell Line, Tumor, Dexamethasone, Enzyme Activation, Genes, Reporter, HeLa Cells, Hormone Antagonists, Humans, Luciferases, Lung Neoplasms, Mifepristone, PPAR gamma, Receptors, Glucocorticoid, Rosiglitazone, Thiazolidinediones, Transfection