Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Upper-body adiposity is associated with increased metabolic disease risk, while lower-body adiposity is paradoxically protective. Efforts to understand the underlying mechanisms require appropriate and reproducible in vitro culture models. We have therefore generated immortalised (im) human preadipocyte (PAD) cell lines derived from paired subcutaneous abdominal and gluteal adipose tissue. These cell lines, denoted imAPAD and imGPAD display enhanced proliferation and robust adipogenic capacities. Differentiated imAPAD and imGPAD adipocytes synthesize triglycerides de novo and respond lipolytically to catecholamine-stimulation. Importantly the cells retain their depot-of-origin 'memory' as reflected by inherent differences in fatty acid metabolism and expression of depot-specific developmental genes. These features make these cell lines an invaluable tool for the in vitro investigation of depot-specific human adipocyte biology.

Original publication




Journal article



Publication Date





40 - 55


abdominal, adipogenesis, body fat distribution, gluteal, human adipose tissue, preadipocyte cell lines, Abdominal Fat, Adipocytes, Adipogenesis, Adipose Tissue, Adiposity, Body Fat Distribution, Buttocks, Cell Differentiation, Cell Line, Humans, Models, Biological, Obesity, Subcutaneous Fat