A shape-space-based approach to tracking myocardial borders and quantifying regional left-ventricular function applied in echocardiography.
Jacob G., Noble JA., Behrenbruch C., Kelion AD., Banning AP.
This paper presents a new semi-automatic method for quantifying regional heart function from two-dimensional echocardiography. In the approach, we first track the endocardial and epicardial boundaries using a new variant of the dynamic snake approach. The tracked borders are then decomposed into clinically meaningful regional parameters, using a novel interpretational shape-space motivated by the 16-segment model used in clinical practice for qualitative assessment of heart function. We show how a quantitative and automatic scoring scheme for the endocardial excursion and myocardial thickening can be derived from this. Results illustrating our approach on apical long-axis two-chamber-view data from a patient with a myocardial infarct in the apical anterior/inferior region of the heart are presented. In a case study (five patients, nine data sets) the performance of the tracking and interpretation techniques are compared with manual delineations of borders using a number of quantitative measures of regional comparison.