Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Splicing is an essential cellular process which is carried out by the spliceosome in order to remove the introns and join the exons present in pre-mRNA transcripts. A variety of spliceosomal mutations have been recently identified in the myelodysplastic syndromes (MDS), a heterogeneous group of hematopoietic stem cell malignancies, revealing a new leukemogenic pathway involving spliceosomal dysfunction. Splicing factor genes are the most frequently mutated genes found in MDS, with mutations occurring in more than half of all patients. The high mutation frequency in different components of the spliceosome in MDS indicates that aberrant splicing may be a common consequence of these mutations in this disorder. RNA sequencing studies using MDS patient bone marrow cells and different mouse models have identified several downstream targets of the splicing factor mutations. Aberrant splicing of these target genes may contribute to MDS pathogenesis, however functional studies are required in order to fully determine the effects of the aberrant isoforms on disease phenotype. Splicing inhibitors are currently being developed and may be used as therapeutic agents to target aberrant pre-mRNA splicing in MDS and other cancers with splicing factor mutations. The mouse models expressing splicing factor mutations may prove particularly valuable for pre-clinical testing of these drugs.


Journal article


Curr Pharm Des

Publication Date





2333 - 2344


Animals, Humans, Mutation, Myelodysplastic Syndromes, RNA Splicing, Spliceosomes