Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Concerted activation of different voltage-gated Ca( (2+) ) channel isoforms may determine the kinetics of insulin release from pancreatic islets. Here we have elucidated the role of R-type Ca(V)2.3 channels in that process. A 20% reduction in glucose-evoked insulin secretion was observed in Ca(V)2.3-knockout (Ca(V)2.3(-/-)) islets, close to the 17% inhibition by the R-type blocker SNX482 but much less than the 77% inhibition produced by the L-type Ca(2+) channel antagonist isradipine. Dynamic insulin-release measurements revealed that genetic or pharmacological Ca(V)2.3 ablation strongly suppressed second-phase secretion, whereas first-phase secretion was unaffected, a result also observed in vivo. Suppression of the second phase coincided with an 18% reduction in oscillatory Ca(2+) signaling and a 25% reduction in granule recruitment after completion of the initial exocytotic burst in single Ca(V)2.3(-/-) beta cells. Ca(V)2.3 ablation also impaired glucose-mediated suppression of glucagon secretion in isolated islets (27% versus 58% in WT), an effect associated with coexpression of insulin and glucagon in a fraction of the islet cells in the Ca(V)2.3(-/-) mouse. We propose a specific role for Ca(V)2.3 Ca(2+) channels in second-phase insulin release, that of mediating the Ca(2+) entry needed for replenishment of the releasable pool of granules as well as islet cell differentiation.

Original publication

DOI

10.1172/JCI22518

Type

Journal article

Journal

J Clin Invest

Publication Date

01/2005

Volume

115

Pages

146 - 154

Keywords

Animals, Calcium, Calcium Channels, Calcium Channels, R-Type, Cation Transport Proteins, Cell Differentiation, Cells, Cultured, Electrophysiology, Exocytosis, Glucagon, Glucose, Glucose Tolerance Test, Homeostasis, Immunohistochemistry, Insulin, Islets of Langerhans, Mice, Mice, Inbred C57BL, Mice, Knockout, Pancreatic Hormones, Patch-Clamp Techniques, Perfusion