Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Murine bone marrow cells expressing the cell surface Ag RB6-8C5 were identified by fluorescence-activated cell-sorting analysis using a rat IgG mAb. The fluorescent intensity of RB6-8C5 was variable on bone marrow cells. This made it possible to separate bone marrow cells into distinct subpopulations, RB6-8C5neg, RB6-8C5lo, and RB6-8C5hi cells. Morphologic analysis of the sorted populations demonstrated that the Ag was expressed on myeloid cells. The expression of RB6-8C5 increases with granulocyte maturation, whereas expression is transient on cells in the monocytic lineage. The RB6-8C5hi sorted cells were enriched for end-stage neutrophils (75%), whereas the RB6-8C5lo sorted cells contained more immature myeloid cells and myelocytes (75%). Lymphocytes and macrophages were less than 5% in any RB6-8C5+ population, whereas the erythroid precursors were RB6-8C5neg. The colony forming unit culture (CFU-C) (greater than 90%) were found in the RB6-8C5neg and RB6-8C5lo populations, and all the CFU-granulocyte, erythroid, megakaryocyte, and macrophage (CFU-GEMM) and burst-forming units-erythroid (BFU-E) were in the RB6-8C5neg population. Granulocyte-macrophage-CSFR (GM-CSFR) and IL-1 alpha R were expressed on RB6-8C5hi bone marrow cells, whereas no receptors could be detected on RB6-8C5neg and RB6-8C5lo cells. The expression of the RB6-8C5 Ag can be induced on RB6-8C5neg cells in liquid culture by IL-3 and granulocyte-macrophage CSF. Thus, RB6-8C5 is a myeloid differentiation Ag whose expression can be regulated by cytokines.

Type

Journal article

Journal

J Immunol

Publication Date

01/07/1991

Volume

147

Pages

22 - 28

Keywords

Animals, Antibodies, Monoclonal, Antigens, Differentiation, Myelomonocytic, Antigens, Surface, Bone Marrow, Bone Marrow Cells, Cell Differentiation, Cell Division, Cell Separation, Flow Cytometry, Granulocyte Colony-Stimulating Factor, Granulocyte-Macrophage Colony-Stimulating Factor, Hematopoiesis, Interleukin-3, Macrophage Colony-Stimulating Factor, Mice, Receptors, Granulocyte-Macrophage Colony-Stimulating Factor, Receptors, Immunologic, Receptors, Interleukin-1, Spleen