Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Alu elements comprise >10% of the human genome. We have used a computational biology approach to analyze the human genomic DNA sequence databases to determine the impact of gene conversion on the sequence diversity of recently integrated Alu elements and to identify Alu elements that were potentially retroposition competent. We analyzed 269 Alu Ya5 elements and identified 23 members of a new Alu subfamily termed Ya5a2 with an estimated copy number of 35 members, including the de novo Alu insertion in the NF1 gene. Our analysis of Alu elements containing one to four (Ya1-Ya4) of the Ya5 subfamily-specific mutations suggests that gene conversion contributed as much as 10%-20% of the variation between recently integrated Alu elements. In addition, analysis of the middle A-rich region of the different Alu Ya5 members indicates a tendency toward expansion of this region and subsequent generation of simple sequence repeats. Mining the databases for putative retroposition-competent elements that share 100% nucleotide identity to the previously reported de novo Alu insertions linked to human diseases resulted in the retrieval of 13 exact matches to the NF1 Alu repeat, three to the Alu element in BRCA2, and one to the Alu element in FGFR2 (Apert syndrome). Transient transfections of the potential source gene for the Apert's Alu with its endogenous flanking genomic sequences demonstrated the transcriptional and presumptive transpositional competency of the element.

Type

Journal article

Journal

Genome Res

Publication Date

10/2000

Volume

10

Pages

1485 - 1495

Keywords

Alleles, Alu Elements, Animals, Base Sequence, Computational Biology, Gene Conversion, Gene Frequency, Genetic Variation, Genome, Human, Humans, Molecular Sequence Data, Rats, Retroelements, Sequence Alignment, Trinucleotide Repeat Expansion, Tumor Cells, Cultured