Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Physiological studies of mice are facilitated by normal plasma and 24-hour urinary reference ranges, but variability of these parameters may increase due to stress that is induced by housing in metabolic cages. We assessed daily weight, food and water intake, urine volume and final day measurements of the following: plasma sodium, potassium, chloride, urea, creatinine, calcium, phosphate, alkaline phosphatase, albumin, cholesterol and glucose; and urinary sodium, potassium, calcium, phosphate, glucose and protein in 24- to 30-week-old C3H/HeH, BALB/cAnNCrl and C57BL/6J mice. Between 15 and 20 mice of each sex from all three strains were individually housed in metabolic cages with ad libitum feeding for up to seven days. Acclimatization was evaluated using general linear modelling for repeated measures and comparison of biochemical data was by unpaired t-test and analysis of variance (SPSS version 12.0.1). Following an initial 5-10% fall in body weight, daily dietary intake, urinary output and weight in all three strains reached stable values after 3-4 days of confinement. Significant differences in plasma glucose, cholesterol, urea, chloride, calcium and albumin, and urinary glucose, sodium, phosphate, calcium and protein were observed between strains and genders. Thus, these results provide normal reference values for plasma and urinary biochemistry in three strains housed in metabolic cages and demonstrate that 3-4 days are required to reach equilibrium in metabolic cage studies. These variations due to strain and gender have significant implications for selecting the appropriate strain upon which to breed genetically-altered models of metabolic and renal disease.

Original publication




Journal article


Lab Anim

Publication Date





218 - 225


Acclimatization, Animals, Blood Chemical Analysis, Female, Housing, Animal, Male, Mice, Mice, Inbred BALB C, Mice, Inbred C3H, Mice, Inbred C57BL, Mice, Inbred Strains, Reference Values, Sex Factors, Species Specificity, Stress, Physiological, Urinalysis