Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Basement membrane-degrading metalloproteinases (gelatinases) appear necessary for vascular smooth muscle cell migration and proliferation in culture and for intimal migration of cells after balloon injury to the rat carotid artery. We investigated in the present study the secretion of gelatinases from pig carotid artery tissue after balloon injury. Segments of injured artery and segments proximal and distal to the area of injury were removed 3, 7, and 21 days after balloon dilatation. Medial explants from these segments were then cultured for 3 days, and the serum-free conditioned media were subjected to gelatin zymography. Production of 72- and 95-kD gelatinases was quantified by densitometry. Balloon-injured segments secreted significantly more 72- and 95-kD gelatinase than did paired distal segments at all time points. Release of both gelatinase activities was increased at 3 and 7 days relative to segments from uninjured arteries but declined again by 21 days after balloon injury. Similar results were found for gelatinase levels in extracts of arterial tissue. Consistent with the protein secretion data, in situ hybridization demonstrated that the mRNAs for both gelatinases were upregulated after balloon injury. Expression was prominent in medial smooth muscle cells, particularly around foci of necrosis, and in neointimal cells 3 and 7 days after balloon injury; 72-kD gelatinase mRNA persisted after 21 days and was prominent in regrown endothelial cells. The upregulation of gelatinase activity paralleled the time course of smooth muscle cell migration and proliferation in this model. We conclude that increased gelatinase production occurs in response to balloon injury and may play a role in permitting migration and proliferation of vascular smooth muscle cells.

Type

Journal article

Journal

Circ Res

Publication Date

12/1996

Volume

79

Pages

1177 - 1187

Keywords

Animals, Basement Membrane, Carotid Arteries, Catheterization, Cell Division, Cell Movement, Gelatinases, In Situ Hybridization, Muscle, Smooth, Vascular, RNA, Messenger, Rats, Swine, Up-Regulation