Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Diamond-Blackfan anemia (DBA) is a disorder characterized by a selective defect in erythropoiesis. Delineation of the precise defect is hampered by a lack of markers that define cells giving rise to erythroid burst- and erythroid colony-forming unit (BFU-E and CFU-E) colonies, the clonogenic assays that quantify early and late erythroid progenitor (EEP and LEP) potential, respectively. By combining flow cytometry, cell-sorting, and single-cell clonogenic assays, we identified Lin(-)CD34(+)CD38(+)CD45RA(-)CD123(-)CD71(+)CD41a(-)CD105(-)CD36(-) bone marrow cells as EEP giving rise to BFU-E, and Lin(-)CD34(+/-)CD38(+)CD45RA(-)CD123(-)CD71(+)CD41a(-)CD105(+)CD36(+) cells as LEP giving rise to CFU-E, in a hierarchical fashion. We then applied these definitions to DBA and identified that, compared with controls, frequency, and clonogenicity of DBA, EEP and LEP are significantly decreased in transfusion-dependent but restored in corticosteroid-responsive patients. Thus, both quantitative and qualitative defects in erythroid progenitor (EP) contribute to defective erythropoiesis in DBA. Prospective isolation of defined EPs will facilitate more incisive study of normal and aberrant erythropoiesis.

Original publication




Journal article



Publication Date





2553 - 2557


Anemia, Diamond-Blackfan, Antigens, CD, Bone Marrow Cells, CD36 Antigens, Cells, Cultured, Colony-Forming Units Assay, Endoglin, Erythroid Precursor Cells, Erythropoiesis, Flow Cytometry, GATA1 Transcription Factor, GATA2 Transcription Factor, Gene Expression, Humans, Immunophenotyping, Prospective Studies, Receptors, Cell Surface