Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© 2014 EURASIP. Bi-CoPaM ensemble clustering has the ability to mine a set of microarray datasets collectively to identify the subsets of genes consistently co-expressed in all of them. It also has the capability of considering the entire gene set without pre-filtering as it implicitly filters out less interesting genes. While it showed success in revealing new insights into the biology of yeast, it has never been applied to bacteria. In this study, we apply Bi-CoPaM to five bacterial datasets, identifying two clusters of genes as the most consistently co-expressed. Strikingly, their average profiles are consistently negatively correlated in most of the datasets. Thus, we hypothesise that they are regulated by a common biological machinery, and that their genes with unknown biological processes may be participating in the same processes in which most of their genes known to participate. Additionally, our results demonstrate the applicability of Bi-CoPaM to a wide range of species.

Type

Conference paper

Publication Date

01/01/2014

Pages

2485 - 2489