Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Closure of ATP-regulated K+ channels (KATP channels) plays a central role in glucose-stimulated insulin secretion in beta cells. KATP channels are also highly expressed in glucagon-producing alpha cells, where their function remains unresolved. Under hypoglycaemic conditions, KATP channels are open in alpha cells but their activity is low and only ~1% of that in beta cells. Like beta cells, alpha cells respond to hyperglycaemia with KATP channel closure, membrane depolarisation and stimulation of action potential firing. Yet, hyperglycaemia reciprocally regulates glucagon (inhibition) and insulin secretion (stimulation). Here we discuss how this conundrum can be resolved and how reduced KATP channel activity, via membrane depolarisation, paradoxically reduces alpha cell Ca2+ entry and glucagon exocytosis. Finally, we consider whether the glucagon secretory defects associated with diabetes can be attributed to impaired KATP channel regulation and discuss the potential for remedial pharmacological intervention using sulfonylureas. © 2014 Springer-Verlag Berlin Heidelberg.

Original publication




Journal article



Publication Date





1749 - 1761