Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The cytochrome p450 (CYP) superfamily comprises enzymes that play an essential role in the transformation of medically relevant compounds. Accurate genotyping of polymorphisms in members of this family is drawing increasing interest because certain allelic variants may result in either loss of efficacy or toxic accumulation of therapeutic agents. Debrisoquine 4-hydroxylase, or CYP2D6, is among the most widely studied of the CYPs. The complexity of the CYP2D6 genomic region, including pseudogenes, gene deletions, and gene duplications, has offered numerous challenges to developing a genotyping strategy. We describe a comprehensive CYP2D6 genotyping strategy that employs both a PCR/Invader genotyping assay system and an Invader genomic copy number assay The Invader system is a homogeneous, isothermal, highly specific, and robust signal amplification system. Resultsfrom II CYP2D6 assays in an alle frequency study compare well to published allele frequency values for Caucasians. Further, Invader assays provided unambiguous genotyping determinations for 100% of the 171 samples that yielded a visible PCR product on an agarose gel. A copy number assay yielded only one equivocal result in 205 samples. We identified 17 single-copy individuals and 17 three-copy (or more) individuals.

Type

Journal article

Journal

Biotechniques

Publication Date

06/2002

Volume

Suppl

Pages

34 - 43

Keywords

Alleles, Base Sequence, Cytochrome P-450 CYP2D6, DNA Mutational Analysis, DNA Primers, DNA Probes, False Positive Reactions, Gene Frequency, Genome, Human, Genotype, Humans, Molecular Sequence Data, Phenotype, Polymerase Chain Reaction, Polymorphism, Genetic, Polymorphism, Single Nucleotide, Reproducibility of Results, Sensitivity and Specificity, Sequence Analysis, DNA, Sequence Homology