Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Oral feeding with the creatine analogue beta-guanidinopropionate (beta-GP) reduces myocardial phosphocreatine and creatine concentrations by about 80%in vitro, this is accompanied by reduced contractile performance. We hypothesized, thus, that beta-GP feeding leads to hemodynamic changes in vivo characteristic of heart failure. beta-GP was fed to Wistar rats for up to 8 weeks. In isolated hearts, function was measured isovolumically, myocardial energetics were followed with (31)P-NMR spectroscopy. In vivo hemodynamics were measured with Millar-Tip-catheters and an electromagnetic flow probe. Beta-GP feeding did not alter heart weight. In vitro, diastolic pressure-volume curves indicated structural left ventricular dilatation, and a 36% reduction of left ventricular developed pressure was found; phosphocreatine was reduced by approximately 80%, ATP unchanged and creatine kinase reaction velocity ((31)P-MR saturation transfer) decreased by approximately 90%. The total creatine pool (high-pressure liquid chromatography) was reduced by up to approximately 70%. In contrast to in vitro findings, in vivo cardiac hemodynamics (including left ventricular developed pressure, d P/d t(max), cardiac output and peripheral vascular resistance) at rest and during acute volume loading showed no alterations after beta-GP feeding. The only functional impairment observed in vivo was a 14% reduction of maximum left ventricular developed pressure during brief aortic occlusion. In the intact rat, cardiac and/or humoral compensatory mechanisms are sufficient to maintain normal hemodynamics in spite of a 90% reduction of creatine kinase reaction velocity. However, chronic beta-GP feeding leads to structural left ventricular dilatation.

Original publication

DOI

10.1006/jmcc.1999.1016

Type

Journal article

Journal

J Mol Cell Cardiol

Publication Date

10/1999

Volume

31

Pages

1845 - 1855

Keywords

Adenosine Diphosphate, Adenosine Triphosphate, Animals, Blood Pressure, Coronary Circulation, Creatine, Diastole, Guanidines, Heart, Heart Rate, Hemodynamics, Magnetic Resonance Spectroscopy, Myocardium, Organ Size, Perfusion, Phosphocreatine, Propionates, Rats, Rats, Wistar, Time Factors, Ventricular Function, Left