Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The Nextera protocol, which utilises a transposome based approach to create libraries for Illumina sequencing, requires pure DNA template, an accurate assessment of input concentration and a column clean-up that limits its applicability for high-throughput sample preparation. We addressed the identified limitations to develop a robust workflow that supports both rapid and high-throughput projects also reducing reagent costs. RESULTS: We show that an initial bead-based normalisation step can remove the need for quantification and improves sample purity. A 75% cost reduction was achieved with a low-volume modified protocol which was tested over genomes with different GC content to demonstrate its robustness. Finally we developed a custom set of index tags and primers which increase the number of samples that can simultaneously be sequenced on a single lane of an Illumina instrument. CONCLUSIONS: We addressed the bottlenecks of Nextera library construction to produce a modified protocol which harnesses the full power of the Nextera kit and allows the reproducible construction of libraries on a high-throughput scale reducing the associated cost of the kit.

Original publication

DOI

10.1186/1472-6750-13-104

Type

Journal article

Journal

BMC Biotechnol

Publication Date

20/11/2013

Volume

13

Keywords

Automation, Laboratory, Clostridium difficile, DNA Primers, Gene Library, High-Throughput Nucleotide Sequencing, Sequence Analysis, DNA, Workflow