Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The use of mouse models in medical research has greatly contributed to our understanding of the development of type 2 diabetes mellitus and the mechanisms of disease progression in the context of insulin resistance and β-cell dysfunction. Maintenance of glucose homeostasis involves a complex interplay of many genes and their actions in response to exogenous stimuli. In recent years, the availability of large population-based cohorts and the capacity to genotype enormous numbers of common genetic variants have driven various large-scale genome-wide association studies, which has greatly accelerated the identification of novel genes likely to be involved in the development of type 2 diabetes. The increasing demand for verifying novel genes is met by the timely development of new mouse resources established as various collaborative projects involving major transgenic and phenotyping centres and laboratories worldwide. The surge of new data will ultimately enable translational research into potential improvement and refinement of current type 2 diabetes therapy options, and hopefully restore quality of life for patients.

Original publication




Journal article


Expert Rev Mol Med

Publication Date





Animals, Cohort Studies, Diabetes Mellitus, Type 2, Disease Models, Animal, Genome-Wide Association Study, Glucose, Humans, Insulin, Insulin Resistance, Insulin-Secreting Cells, Mice, Quantitative Trait Loci, Signal Transduction, Translational Medical Research