Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: To delineate a novel autosomal recessive multiple congenital anomaly-mental retardation (MCA-MR) syndrome in 2 female siblings of a consanguineous pedigree and to identify the disease-causing mutation. STUDY DESIGN: Both siblings were clinically characterized and homozygosity mapping and sequencing of candidate genes were applied. The contribution of nonsense-mediated messenger RNA (mRNA) decay to the expression of mutant mRNA in fibroblasts of a healthy carrier and a control was studied by pyrosequencing. RESULTS: We identified the first homozygous SALL1 mutation, c.3160C > T (p.R1054*), in 2 female siblings presenting with multiple congenital anomalies, central nervous system defects, cortical blindness, and absence of psychomotor development (ie, a novel recognizable, autosomal recessive MCA-MR). The mutant SALL1 transcript partially undergoes nonsense-mediated mRNA decay and is present at 43% of the normal transcript level in the fibroblasts of a healthy carrier. CONCLUSION: Previously heterozygous SALL1 mutations and deletions have been associated with dominantly inherited anal-renal-radial-ear developmental anomalies. We identified an allelic recessive SALL1-related MCA-MR. Our findings imply that quantity and quality of SALL1 transcript are important for SALL1 function and determine phenotype, and mode of inheritance, of allelic SALL1-related disorders. This novel MCA-MR emphasizes SALL1 function as critical for normal central nervous system development and warrants a detailed neurologic investigation in all individuals with SALL1 mutations.

Original publication

DOI

10.1016/j.jpeds.2012.08.042

Type

Journal article

Journal

J Pediatr

Publication Date

03/2013

Volume

162

Pages

612 - 617

Keywords

Abnormalities, Multiple, Female, Homozygote, Humans, Infant, Newborn, Intellectual Disability, Limb Deformities, Congenital, Mutation, Nonsense Mediated mRNA Decay, Pedigree, Syndrome, Transcription Factors