Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Steele and others have suggested that minimizing changes in glucose specific activity when estimating hepatic glucose output (HGO) during glucose infusions could reduce non-steady-state errors. This approach was assessed in nondiabetic and type II diabetic subjects during constant low dose [27 ideal body wt (IBW)-1.min-1] glucose infusion followed by a 12 mmol/l hyperglycemic clamp. Eight subjects had paired tests with and without labeled infusions. Labeled infusion was used to compare HGO in 11 nondiabetic and 15 diabetic subjects. Whereas unlabeled infusions produced negative values for endogenous glucose output, labeled infusions largely eliminated this error and reduced the dependence of the Steele model on the pool fraction in the paired tests. By use of labeled infusions, 11 nondiabetic subjects suppressed HGO from 10.2 +/- 0.6 (SE) fasting to 0.8 +/- 0.9 IBW-1.min-1 after 90 min of glucose infusion and to -1.9 +/- 0.5 IBW-1.min-1 after 90 min of a 12 mmol/l glucose clamp, but 15 diabetic subjects suppressed only partially from 13.0 +/- 0.9 fasting to 5.7 +/- 1.2 at the end of the glucose infusion and 5.6 +/- 1.0 IBW-1.min-1 in the clamp (P = 0.02, 0.002, and less than 0.001, respectively).

Original publication




Journal article


Am J Physiol

Publication Date





E531 - E540


Diabetes Mellitus, Diabetes Mellitus, Type 2, Fasting, Glucose, Glucose Clamp Technique, Humans, Liver, Mathematics, Models, Theoretical, Radioisotope Dilution Technique, Reference Values, Tritium