Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cancer arises from 'self' in a series of steps that are all subject to immunoediting. Therefore, therapeutic cancer vaccines must stimulate an immune response against tumour antigens that have already evaded the body's immune defences. Vaccines presenting a tumour antigen in the context of obvious danger signals seem more likely to stimulate a response. This approach can be facilitated by genetic engineering using recombinant viral vectors expressing tumour antigens, cytokines, or both, from an immunogenic virus particle. We overview clinical attempts to use these agents for systemic immunisation and contrast the results with strategies employing direct intratumoural administration. We focus on the challenge of producing an effective response within the immune-suppressive tumour microenvironment, and discuss how the technology can overcome these obstacles. © 2012 Elsevier Ltd.

Original publication




Journal article


Trends in Molecular Medicine

Publication Date





564 - 574