A comparison of case-only designs for detecting gene x gene interaction in rheumatoid arthritis using genome-wide case-control data in Genetic Analysis Workshop 16.
Clarke GM., Pettersson FH., Morris AP.
We compare and contrast case-only designs for detecting gene x gene (G x G) interaction in rheumatoid arthritis (RA) using the genome-wide data provided by Genetic Analysis Workshop 16 Problem 1. Logistic as well as novel multinomial and proportional odds models that do not depend on the specification of additive or dominant models for susceptibility loci were applied to the case-only sample. We identified 519 significant interactions (p < 1 x 10-4 in at least one test). All methods detected unique significant interactions; 169 were common to more than one model and only 21 were common to all models. Results emphasize that categorization of the genetic variables and choice of regression model are critical and hugely influential in the identification of G x G. Porportional odds and multinomial methods provide new tools for identification of G x G interactions.