Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Melanoma-specific T cells can occur spontaneously or in response to vaccination or other therapies, but the frequency is much lower than observed in viral infections. The presence of tumor-specific T cells does not necessarily translate into clinical regressions for a variety of reasons such as an insufficient frequency, activation state or homing capacity of the T cells or escape strategies of the tumor. Having screened melanoma patients prior to inclusion in vaccination trials for spontaneous tumor-specific T cells either by Elispot or tetramer-staining, we have identified 3 patients with sufficient numbers of tumor-reactive T cells to more than 1 TAA and at least 1 virus-antigen to perform phenotypic and functional analysis directly ex vivo. These stage IV melanoma patients showed specific CTL against melan-A.A2, tyrosinase.A2 and influenza matrix peptide (IMP).A2 readily detectable in peripheral blood. T-cell receptor (TCR) staining using the tetramer technology was combined with phenotypic characterization and functional assays. In contrast to IMP-specific CTL, melanoma-specific CTL were predominantly terminally differentiated effector cells. However, analysis of melan-A- and tyrosinase-specific T-cell lines showed that only a part of the melanoma-specific CTL were able to lyse peptide-loaded target cells. Interestingly, the described phenotypic and functional differences of melan-A- and tyrosinase-specific CTL appeared not only between patients but were also evident within patients, suggesting that the immune response against various tumor antigens is regulated independently.

Original publication




Journal article


Int J Cancer

Publication Date





450 - 455


Adult, Aged, Antigens, Neoplasm, CD8-Positive T-Lymphocytes, Female, HLA-A Antigens, HLA-A2 Antigen, Humans, Immunophenotyping, MART-1 Antigen, Male, Melanoma, Middle Aged, Neoplasm Proteins, Peptide Fragments, Phenotype, T-Lymphocytes, Cytotoxic, Tumor Cells, Cultured