Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tumor antigens that might serve as potential targets for adoptive T-cell therapy have been defined in different tumor entities, especially in malignant melanoma. To generate conditions to induce primary T-cell responses against different HLA-A*0201-restricted melanoma peptides and to allow further expansion of peptide-specific T cells for adoptive transfer, CD8+-purified T cells from healthy donors were stimulated with Melan-A-pulsed autologous dendritic cells. Dendritic cells were generated in vitro from monocytes with granulocyte macrophage colony-stimulating factor, interleukin-4, and transforming growth factor-beta1. After 3-4 weekly stimulation cycles with Melan-A-pulsed DCs, we were able to induce a strong peptide-specific CTL response in vitro. MHC-peptide tetramer staining revealed a frequency of up to 3.5% CD8+/Melan-A+ T cells. Additional antigen-independent expansion with anti-CD3/anti-CD28 monoclonal antibodies together with interleukin-2 gave rise to 600-fold expansion of CD8+ CTLs that maintained Melan-A specificity and were able to efficiently lyse Melan-A-expressing melanoma cells. To enrich antigen-specific T cells in vitro, we used a recently established technology for analysis and sorting of live cells according to secreted cytokines. In the present study, we demonstrated that Melan-A-specific T cells can be purified by magnetic separation according to secreted IFN-gamma. These cells revealed a very potent monospecific CTL response, even at low E:T ratios, against Melan-A-pulsed and Melan-A-expressing target cells. Altogether, our study demonstrated that we have developed an efficient method for generating large numbers of peptide-specific T cells in vitro that may be used for adoptive T-cell transfer in tumor immunotherapy.


Journal article


Clin Cancer Res

Publication Date





1997 - 2005


Adoptive Transfer, Amino Acid Sequence, Antigens, Neoplasm, CD8 Antigens, Clone Cells, Dendritic Cells, HLA-A Antigens, Humans, Immunotherapy, Interferon-gamma, Leukocytes, Mononuclear, MART-1 Antigen, Neoplasm Proteins, Neoplasms, Protein Binding, T-Lymphocytes, Cytotoxic, Tumor Cells, Cultured