Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A classical twin study was performed to assess the relative contributions of genetic and environmental factors to serum levels of calcium, phosphate and magnesium, urinary levels of calcium, sodium and potassium, and creatinine clearance. The subjects were 1747 adult female twin pairs: 539 monozygotic and 1208 dizygotic. The intraclass correlations were calculated, and maximum-likelihood model fitting was used to estimate genetic and environmental variance components. The intraclass correlations for all of the variables assessed were higher in monozygotic twin pairs. The heritabilities (with 95% confidence intervals) obtained from model fitting were: serum calcium, 33% (21-45%); serum phosphate, 58% (53-62%), serum magnesium, 27% (15-39%); 24 h urinary potassium, 40% (27-51%); 24 h urinary calcium, 52% (41-61%); 24 h urinary sodium, 43% (30-54%); fractional excretion of sodium, 52% (44-59%); serum creatinine, 37% (25-49); calculated creatinine clearance, 63% (54-72%). This study provides evidence for the importance of genetic factors in determining urinary and blood levels of the major electrolytes involved in blood pressure regulation. Identifying heritability is the first step on the way to finding specific genes, which may improve our insight into the pathophysiology of the metabolism of these electrolytes, and thereby improve our understanding of the aetiology of complex diseases such as renal failure and hypertension.


Journal article


Clin Sci (Lond)

Publication Date





259 - 265


Adolescent, Adult, Aged, Creatinine, Electrolytes, Environment, Female, Glomerular Filtration Rate, Humans, Kidney, Middle Aged, Twins, Dizygotic, Twins, Monozygotic, Water-Electrolyte Balance