Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: GH causes insulin resistance, impairs glycemic control and increases the risk of vascular diabetic complications. Sulphonylureas stimulate GH secretion and this study was undertaken to investigate the possible stimulatory effect of repaglinide and nateglinide, two novel oral glucose regulators, on critical steps of the stimulus-secretion coupling in single rat somatotrophs. METHODS: Patch-clamp techniques were used to record whole-cell ATP-sensitive K(+) (K(ATP)) and delayed outward K(+) currents, membrane potential and Ca(2+)-dependent exocytosis. GH release was measured from perifused rat somatotrophs. RESULTS: Both nateglinide and repaglinide dose-dependently suppressed K(ATP) channel activity with half-maximal inhibition being observed at 413 nM and 13 nM respectively. Both compounds induced action potential firing in the somatotrophs irrespective of whether GH-releasing hormone was present or not. The stimulation of electrical activity by nateglinide, but not repaglinide, was associated with an increased mean duration of the action potentials. The latter effect correlated with a reduction of the delayed outward K(+) current, which accounts for action potential repolarization. The latter effect had a K(d) of 19 microM but was limited to 38% inhibition. When applied at concentrations similar to those required to block K(ATP) channels, nateglinide in addition potentiated Ca(2+)-evoked exocytosis 3.3-fold (K(d)=3 microM) and stimulated GH release 4.5-fold. The latter effect was not shared by repaglinide. The stimulation of exocytosis by nateglinide was mimicked by cAMP and antagonized by the protein kinase A inhibitor Rp-cAMPS. CONCLUSION: Nateglinide stimulates GH release by inhibition of plasma membrane K(+) channels, elevation of cytoplasmic cAMP levels and stimulation of Ca(2+)-dependent exocytosis. By contrast, the effect of repaglinide was confined to inhibition of the K(ATP) channels.


Journal article


Eur J Endocrinol

Publication Date





133 - 142


Animals, Calcium, Carbamates, Cyclic AMP, Cyclic AMP-Dependent Protein Kinases, Cyclohexanes, Delayed Rectifier Potassium Channels, Exocytosis, Growth Hormone, Growth Hormone-Releasing Hormone, Hypoglycemic Agents, Male, Membrane Potentials, Nateglinide, Patch-Clamp Techniques, Phenylalanine, Piperidines, Pituitary Gland, Potassium, Potassium Channel Blockers, Potassium Channels, Potassium Channels, Voltage-Gated, Rats, Rats, Sprague-Dawley