Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We report the characterization of three Emx genes in a chondrichthyan, the dogfish Scyliorhinus canicula. Comparisons of these genes with their osteichthyan counterparts indicate that the gnathostome Emx genes belong to three distinct orthology classes, each containing one of the dogfish genes and either the tetrapod Emx1 genes (Emx1 class), the osteichthyan Emx2 genes (Emx2 class) or the zebrafish Emx1 gene (Emx3 class). While the three classes could be retrieved from the pufferfish genome data, no indication of an Emx3-related gene in tetrapods could be found in the databases, suggesting that this class may have been lost in this taxon. Expression pattern comparisons of the three dogfish Emx genes and their osteichthyan counterparts indicate that not only telencephalic, but also diencephalic Emx expression territories are highly conserved among gnathostomes. In particular, all gnathostomes share an early, dynamic phase of Emx expression, spanning presumptive dorsal diencephalic territories, which involves Emx3 in the dogfish, but another orthology class, Emx2, in tetrapods. In addition, the dogfish Emx2 gene shows a highly specific expression domain in the cephalic paraxial mesoderm from the end of gastrulation and throughout neurulation, which suggests a role in the segmentation of the cephalic mesoderm.

Type

Journal article

Journal

Dev Biol

Publication Date

15/07/2002

Volume

247

Pages

390 - 404

Keywords

Amino Acid Sequence, Animals, DNA, Complementary, Dogfish, Exons, Homeodomain Proteins, In Situ Hybridization, Introns, Mesoderm, Models, Genetic, Molecular Sequence Data, Multigene Family, Phylogeny, Reverse Transcriptase Polymerase Chain Reaction, Sequence Homology, Amino Acid, Time Factors, Transcription Factors