Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The management of a 1-year-old boy with Crouzonoid features is presented with a description of molecular genetic investigations that revealed a previously unreported mutation of the fibroblast growth factor receptor 2 (FGFR2) gene encoding the amino acid substitution p.Cys62Arg within the immunoglobin-like (IgI) domain. The patient presented in atypical fashion with severe sagittal synostosis but only mild exorbitism and hypertelorism. Owing to the progressively increasing size of the cranial occipital bullet, a total calvarial modeling procedure was performed at 8 months of age to correct the craniofacial deformity. Standard genetic testing of the major mutational "hotspots" associated with craniosynostosis was initially negative. However, further testing for atypical sites of mutation revealed a heterozygous nucleotide substitution (c.184T>C) in exon 3 of FGFR2. This mutation has not been previously reported and is only the second to be identified in the IgI domain; it was not present in either parent, indicating that it had arisen de novo. The child remains well 6 months postoperatively but will be monitored more closely compared with the usual protocol for nonsyndromic sagittal synostosis owing to the potential for increased risk of secondary complications. Key learning points from this case include the need for careful phenotypic evaluation of children presenting with apparently isolated sagittal synostosis and genetic testing for atypical mutations if the usual hotspots are negative.

Original publication

DOI

10.1597/11-185

Type

Journal article

Journal

Cleft Palate Craniofac J

Publication Date

05/2012

Volume

49

Pages

373 - 377

Keywords

Amino Acid Substitution, Craniofacial Dysostosis, Craniosynostoses, Humans, Infant, Male, Mutation, Receptor, Fibroblast Growth Factor, Type 2, Tomography, X-Ray Computed