Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Magnetic resonance imaging (MRI) enhanced with ultrasmall superparamagnetic particles of iron oxide (USPIO) has previously been evaluated in hyperlipidemic rabbits. The aim of this study was therefore to compare USPIO in ruptured and non-ruptured arteries in an atherosclerotic rabbit model. METHODS: Atherosclerotic-like lesions were induced by the combination of endothelial abrasion and high-cholesterol diet in iliac rabbit arteries (n = 16). Rupture of atherosclerotic lesions was realized by oversized balloon angioplasty in one iliac artery, whereas the contralateral artery was used as control. USPIO (ferumoxtran-10: 1 mmol Fe/kg) was administered immediately (n = 10) or 28 days (n = 6) after injury. MRI and histological analysis were performed 7 and 35 days after injury and in control arteries. RESULTS: In vivo MRI analysis showed extended susceptibility artifact with transluminal signal loss in all ruptured arteries 7 days after injury. In contrast, hyposignal was reduced 35 days following injury (i.e. after healing), and absent in non-ruptured arteries. Similarly, histological analysis of iron uptake was significantly increased 7 days after injury compared to healed-ruptured and control arteries. CONCLUSIONS: Accumulation ofUSPIO is significantly increased in ruptured as compared to non-ruptured arteries in the atherosclerotic rabbit model.

Original publication




Journal article


J Vasc Res

Publication Date





119 - 128


Animals, Artifacts, Atherosclerosis, Femoral Artery, Ferrosoferric Oxide, Hyperlipidemias, Iliac Artery, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Rabbits, Rupture, Spontaneous